Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic5

Direct product G=N×Q with N=C2 and Q=C22×Dic5
dρLabelID
C23×Dic5160C2^3xDic5160,226


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic5) = C22×C52C8central extension (φ=1)160C2.1(C2^2xDic5)160,141
C2.2(C22×Dic5) = C2×C4×Dic5central extension (φ=1)160C2.2(C2^2xDic5)160,143
C2.3(C22×Dic5) = C2×C4.Dic5central stem extension (φ=1)80C2.3(C2^2xDic5)160,142
C2.4(C22×Dic5) = C2×C4⋊Dic5central stem extension (φ=1)160C2.4(C2^2xDic5)160,146
C2.5(C22×Dic5) = C23.21D10central stem extension (φ=1)80C2.5(C2^2xDic5)160,147
C2.6(C22×Dic5) = D4×Dic5central stem extension (φ=1)80C2.6(C2^2xDic5)160,155
C2.7(C22×Dic5) = Q8×Dic5central stem extension (φ=1)160C2.7(C2^2xDic5)160,166
C2.8(C22×Dic5) = D4.Dic5central stem extension (φ=1)804C2.8(C2^2xDic5)160,169
C2.9(C22×Dic5) = C2×C23.D5central stem extension (φ=1)80C2.9(C2^2xDic5)160,173

׿
×
𝔽